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Boundary Distributions with Respect to Chebyshev’snequality
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Abstract: Variables whose distributions achieve the boundaye of Chebyshev’s inequality are
characterized and it is found that non-constaniées with this property are symmetric discretéhwi
at most three values. Nevertheless, the bound eb@hev’s inequality remains optimal for the class
of continuous variables.
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INTRODUCTION Dividing by k*a? yields the result.

To show that the bound in Chebyshev’s inequality
The familiar inequality of Chebyshev encounteredcannot be improved, the following example is predd
in most elementary statistics courses affirms foat in (Hogg and Craig, 1995).
every random variable x with mean and standard
deviationo, and for everyk =1, the probability that x

lies strictly within k standard deviations of theeam is Example 1:Let x have the following distribution:

at Ieastl—i Equivalently:

k* x PX)
1
1 -1 8
P(‘x—px zkox)sP 3
0 4
The inequality is trivial ifk =1 so a proof for k>1 1 %

suffices. Elegant short proofs of this inequalisnde

found in standard texts such as Hogg and Craig5)199
and Larson and Farber (2009). The proof given below It is evident (by symmetry) that,p= O and that
and found in (Rui, 1973) does not require separases o2 :zxzp(x):; so that o -1 Thus. for k = 2
for discrete and continuous variables. g 4 2 ’ '

_ _ ko, =1 and P(x-,|< ko, )= P(}{< 1):§=1—i2‘
Proof: Define a new variable by: 4 2
The following questions arise:
ka2 if ‘x —ux‘ >ko, ) ) ) ,
y= ’ « What other variables might satisfy Chebyshev’s
0, iflx-p|<ka, boundary condition?
e Must all such boundary variables have unimodal
distributions as in the example above?
Then: « Can infinitely many distributions satisfy the

boundary condition for the same k?
y<S(x-R)*=E(y)=2 yP(y)=

These questions are answered in the next section
K*o2(|x -,

2ko,) < E((x-W,)*) =0} where k-boundary variables are introduced.
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k--BOUNDARY VARIABLES J6 ,
0< k<7 and are symmetric and cap-shaped and thus
Definition 2: For a fixed k>=1,, a variable x is k- NG

_ unimodal for k<—6. These shapes remain unchanged
boundary ifP(x-p, 2

1
> ko-x):P.
under linear transformation of the variable. It as

_ The 2-boundary variable given above has ggnsequence of the Lemma below that the k-boundary
unimodal distribution. We now give an example of acqngition is invariant under linear transformation,

uniform k-boundary variable suggesting that thepshaf  nirming that indeed, infinitely many exampleskef
a k-boundary variable may depend upon the valée of o nqary variables exist for ea&r=1. In particular, z-

transforms of k-boundary variables yield standard k

Example 3: Let kz@ and let x have the given boqndary vgriables. Our characterization of_k-b_(amd

2 variables will follow from the fact that there isuaique
distribution: non-constant standard k-boundary variable for each
k=1. Constant variables and those with infinite
standard deviation must be separately considered
because they do not have a z-transform. We note tha
constant variables are 1-boundary since they have
standard deviation 0 and variables with infinitenstard
deviation cannot be k-boundary for any finite k. It
follows that non-constant k-boundary variables for
k=1 have z-transforms. We continue with the simple
but important probability invariance for linear
transforms.

[
)
—~
X
(&

Wl wlk m\l—\‘

By symmetry,
%_ Thus, ko, =1 Lemma 5: If y=mx+b with m#0, then for each

H, =0= 02 =ZX2P(X)=ED o, =
3 k>0,P{x-p,|< o, )= P[y-p,|< Io, ).

and Pﬁx—px‘ > 1)=g =

-1
3 k2"

Nl w| -

Proof: For the linear transform y of x, y = mx+b,
The following example shows that Chebyshev’s Ky =Mk +b and 0y =07, =0 =M0; =0, =[ma,.

bound cannot be improved for aky1. Now, qu—uy‘ <ko,)= p(mx_ mu,| < Ko, =
Example 4: Let k>1. and let XX have the following P(m|x-w| <[ lo, )= Plx-1,[< o, )
distribution: It follows immediately that any linear transforrh o
a k-boundary variable is also a k-boundary variavie
x  P(x) in particular, linear transforms of the two andetiwr
o valued discrete k-boundary variables exhibited abov
1 e are k-boundary variables. In fact, the converseus.
1 Every non-constant k-boundary variable is a linear
0 1_F transform of one of the variables from the example
1 above. For each k>1, every variable with a k-boupnda
L e distribution is a linear transform of the variabiose

k-boundary distribution is given in Example 4 above
Also, it may be shown that the only 1-boundary
Then, u, =0,0, -1 and variables are the constant variables and the tvigeda
k uniform discrete variables. Evidently, all variablsith
<ko,)= P{A< 1)= l_iz_ If k = 1, we may asymmetric distributions or having at least foutuea
k including continuous variables, do not satisfy the
assume that the variable is two-valued since theboundary condition for Chebyshev’s inequality. To
P(0) =0. establish this claim we first show that for eactLk
In this general example the distributions arethe standard non-constant k-boundary variable is
symmetric and U-shaped and hence bimodal founique.
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Theorem 6: For each k1, there is a unique non-constant for \z\ <k except on a finite set (or a set of measure 0)
k-boundary variable z having = 0 ando, = 1. N I f(2)dz= 0. Then, j f(2)dz= f(2)-0

Proof: For each k1, the existence of such a standard k- =¥ =k

boundary variable has already been establisheé ginc 1= [ Zf(z)dz= f(z)dz= for |72k except at finitely
transforms are linear transforms and hence presbeve B :

k-boundary condition. For the uniqueness, we cansid ; - -
the discrete and continuous variable cases set;aratemany points (or a set of meastop—1 ‘Z‘Lf(z)dz 0
Firstly, assume that z is a non-constant discrete
boundary variable for some>k with u, = 0 ando, = 1.
Then:

1262=5" 22P(2)=Y" # P(z 3p % P(A Corollary 7: If k>1 and x and y are each k-boundary
FLTP@ \Z\Z:k ( }‘; (Z’)\;k ® variables, then y = mx + b for some m>0 and for

k'I'his contradiction shows that continuous k-boundary
variables do not exist.

, 1 some b.
k*> P(2)=)Y. ZP(z)+ K(PJ:Z ZP(zy %
a jask A<k Proof: By the uniqueness of standard k-boundary

It follows that 3" 2?P(2)= 0 so that in particular, variables, x and y have the same z-transform. In

<k particular, X~ Hx YW Ly =mx+b with m=2r >0
0<|Z< k= P(z)= 0 Also then,1=> ZP(z)= ) K P(z oF oy Oy
. . - EE 42k . 1o, o,
implies that P(z=0) if |z/>k. So, the only possible andb:cT W
X X y

values for z are —k, 0 and k. But, O cannot beathig Technically, the corollary fails for k = 1 sindeeh,

value sinces, =1>0. And, sincey, =0, bqth Yalu-es-k x could be a constant variable while y is a twoudeal
and k must be assumed. Further, the distributiostmu variable. It also follows from the theorem abovattfor

be symmetric since: k>1, the distribution for each k-boundary varialide
o uniquely determined by its shape.
0=4, =-kPEK)+ 0p(0) kP(kF k(P(ky Pt k) Now that k-boundary distributions have been

. A completely determined, in the next section we brief
with k>0= P(Z k)= ng)' consider the dual problem. To what extent can the

Then,1=07 = (-k)’P(-k)+ O P(O} KP(kr 2k P(k  pound in Chebyshev’s inequality be wrong for a give
1 distribution? In other words, for which distributi®

implies that P(k):P(_k):ﬁ' It also follows that will 100% of a population lie within k standard
1 ) deviations of the mean?
P(0)= 1—F. Further, if k = 1, -k and k are the only

k--CONDENSED VARIABLES
values of z each with probabili% .

We now show that no continuous variable has a kPefinition 8: For k>0, a variable x is k-condensed if

boundary distribution. To evoke a contradiction P(x—k|<kd,)=1, or equivalently, if
suppose thatXlL and z is a continuous variable with k- qu_u > ka,)= 0
boundary distribution and that, = 0 ando, = 1. Let X '

f(z) be the probability density function for z aasisume Firstly, there are variables having 100% of all
that f has at most finitely many points of esséntiavalues within k standard deviations for each k>i. |
discontinuity. (Less stringent assumptions on fiddoe  particular, if x is the symmetric variable with two

made.) Firstly: values -1 and 1, themu,=0 and o, =1, so that
1=0}=["Zf(@)dz= [ Zi@)dz | Zf(2)dz P(x-u|<ko,)=P{{< 1)=1 The case for k = 1 is
s |Z<k |42k different. We leave it to the reader to show thaisi

. ~ 1) impossible for any variable with finite variancehave

| Zi@dz+ K [ f(@)dz= | Zf(2)dz K[FJ‘ all values strictly within one standard deviatiaorh

= [ 4= the mean. However, in this case, the probabiligt th

[ Zf(2)dz+ 22 1= [ Zf(2)d= 6= f(zF O variable is strictly within even a fraction of astard
lesk lask deviation of the mean can be arbitrarily close to 1
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higher bound. But, such restriction thwarts the
intended universality of Chebyshev’s inequality. &s
compromise, can the inequality be improved if aggpli

Consider the variables, xwith

distributions:

sequence of

X, P(x,) only to the broad class of all continuous variaBles

- 1 The next section is devoted to the demonstratiam th

4 o the bound of Chebyshev’s inequality, though never
1 achieved by any member of the class, is still optim

0 1—E for the class of continuous variables.

1 %} NEARLY k--BOUNDARY VARIABLES

For any fixe d>0 anck =1, we want to find a non-

1
For eachn=12..u, = Cand o, =—= so that for  onstant continuous variable x for which:

in

k 1

all 0<k<1,P=P(x-u <o <— F =,

2= Prw, < o, = G N 1-L <p{x-p

2 = X
Clearly, for all 0<k<1,limP, =1 Remarkably, also k

n-w

< I@x)s(l—k—lzj+d

limo =0.In some sense, each variabjasxnearly 1- . . .
now Xn bk y After some experimentation and with the help of

condensed. the Maple symbolic software program, we considered
On the other hand, allowing the pathology offamily of continuous variables parametrized by ahwi
infinite standard deviation, yields the existendeko  0<a<1 whose symmetric continuous probability dgnsit
condensed variables for @k k<1. functions are piecewise linear with graphs consistf
the x-axis except where three isosceles triangks r
Example 9: Let x be the continuous variable whose from their bases on the x-axis. The base widthazhe
probability density function is given by: triangle is 2a and O is the center of the basehef t
central triangle. The area of the central triarigleeach
—% ifx <1 variable of the family iSI—k—12+d where it is assumed
f(x)=4 0 if -1<x<1 that d<-L
1 k?
e if1<x sharing an area complementary in 1 to that of the
central triangle. The outer triangles have basemit
removed from O The family of variables x with

The two outer triangles are congruent

Then:
probability density functions,fas described here are
oo ~ ~ defined as follows. For a fixekk=1 and for each
[ fdx=1p,=0 0<a<1, §(x») = 0 except that:
and (1- di¥)(x, + 1+ 2a)
1 28212 -1-2a< x<-1- 4
o2 =jm X (X)dx :Z!imjl ;dx=!imln(t2) = +o0 (dk - 1)(1+ x,)
222 K2 -l-as x <-1
_ _ - - [(d+D)k* —1)(a+ X, )
Thus, 0, =+~ and P4X “x‘<k°x)_PM<+w)_] f.(x,) 212 -asx,<0
X =
fOI’ a.” O< kSl. ) a [1_(d+l)k2](xa_a)
We return now to the question of whether 21 O<x <a
Chebyshev’s inequality can be improved if restdcte ) :
, . 1-dk®)(x, - 1)
to important subclasses of random variables. Of e =
. X . 28212 l<x <l+a
course it can! A Chebyshev type inequality for the , 2
subclass of all continuous uniform variables, oe th (dk” - 1)(x, =1~ 2a)
subclass of all normal variables will have a much 24K l+as x, <1+ 2a
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By Maple, [ f,(x)dx,=1 and u_=0 Also, by
Maple:

@-dk*)[@+a) - (1+ 2a) N
8a kK
(1-dKk®)(1+ 2a)[(+ 2a)- (& &) l
6a’ K
(dk® -D)[1- @+ af ], (- D[+ af- 1]
8a° K2 6 K
[(d+DK* - 1o’ _ [1- (d+ DK &
12K 12K
@-dKk*)[a+ay 1, (dK* - D[+ af- 1,
8a° K2 6& K
(dk® -D)[(1+ 2af - 1+ af 1
8a’ kK
(dk* - 1)1+ 2a)[(+ aj- (& 24) ]
6a’ K

Further,  with Maple we have that
Iimo(kcx):\/l—dk2 which is real and less than 1 for

0< dsk—lz. Thus, we may choose a>0 so that <1.

It follows that for such an

st <10, [

central triangle. Since d can be chosen arbitramégr

1

P} d, the area under the
0, there is no bound larger thal:m—k—l2 for which

Chebyshev’s inequality will hold for all continuous
variables.
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