
Genetic Algorithms for Applied

Path Planning

A Thesis Presented in Partial Ful�llment of

the Honors Program

Vincent R. Ragusa

Abstract

Path planning is the computational task of choosing a path through an environment. As a task

humans do hundreds of times a day, it may seem that path planning is an easy task, and perhaps

naturally suited for a computer to solve. This is not the case however. There are many ways

in which NP-Hard problems like path planning can be made easier for computers to solve, but

the most signi�cant of these is the use of approximation algorithms. One such approximation

algorithm is called a genetic algorithm. Genetic algorithms belong to a an area of computer science

called evolutionary computation. The techniques used in evolutionary computation algorithms are

modeled after the principles of Darwinian evolution by natural selection. Solutions to the problem

are literally bred for their problem solving ability through many generations of selective breeding.

The goal of the research presented is to examine the viability of genetic algorithms as a practical

solution to the path planning problem. Various modi�cations to a well known genetic algorithm

(NSGA-II) were implemented and tested experimentally to determine if the modi�cation had an

e�ect on the operational e�ciency of the algorithm. Two new forms of crossover were implemented

with positive results. The notion of mass extinction driving evolution was tested with inconclusive

results. A path correction algorithm called make valid was created which has proven to be extremely

powerful. Finally several additional objective functions were tested including a path smoothness

measure and an obstacle intrusion measure, the latter showing an enormous positive result.

Department of Computer Science

Under the supervision of Dr. H. David Mathias

Florida Southern College

May 2017

Contents

Abstract

Acknowledgments

1 Introduction 1

1.1 Optimization Problems . 1
1.1.1 Single-Objective Optimization . 1
1.1.2 Multi-Objective Optimization . 2
1.1.3 Computational Complexity . 3

1.2 Path Planning . 6
1.3 UAVs and MAVs . 7
1.4 Genetic Algorithms . 7

1.4.1 Solution Encoding Scheme . 8
1.4.2 Genetic Operators . 8
1.4.3 Selection and Niching . 10
1.4.4 Tuning a Genetic Algorithm . 13

2 Problem Statement 13

3 The Algorithm 14

3.1 Path�nder . 14
3.1.1 Genome & Solution Encoding . 14
3.1.2 Objectives . 15
3.1.3 Algorithm Structure . 15
3.1.4 Genetic Operators . 16

4 Experiments and Results 16

4.1 Crossover and Mass Extinction . 17
4.1.1 Tested Components . 17
4.1.2 Experimental Method . 18
4.1.3 Results . 20

4.2 Crossover, Obstacle Intrusion, Path Correction, and Mutation Size 22
4.2.1 Tested Components . 22
4.2.2 Experimental Method . 24
4.2.3 Results . 26

5 Final Conclusions 30

5.1 Crossover and Mass Extinction . 30
5.2 Crossover, Obstacle Intrusion, and Path Correction 31

References

Acknowledgments

I would like to thank Florida Southern College for �nancial and other support for this re-
search, 3DR for providing educational pricing and support of open source projects important
to research, commercial, and hobbyist projects for MAVs, and Peter Barker for assistance
with the drone ight simulator.

I would also like to thank Annie Wu and Vera Kazakova for valuable feedback and
collaboration, Isabel Loyd and Susan Serrano for assistance with the statistical analysis, and
David Mathias for all of his support and guidance.

1 Introduction

The very idea of e�ciency is born from asking "Why is this task accomplished in this way?"
and following that question with "Is there a better way?". This way of arriving at e�ciency
leaves a lot of room to interpret "better" and as such the task of �nding "the best" of
anything can be extremely complicated. In mathematics and in computer science the task
of �nding the best of something is called an optimization problem.

1.1 Optimization Problems

Optimization problems can be thought of as search problems where the task is to search
for the optimal solution to a problem from among a pool of candidate solutions. There are
typically many candidate solutions, each, usually, with an associated value (or values) which
are desired to either be maxamized or minimized[1]. It is convenient to call all optimization
problems minimization problems because any value you wish to maximize can be multiplied
by (�1) and then minimized to achieve the same e�ect. Also note that it is common for
there to be more than one candidate solution which achieves the optimal value[1].

1.1.1 Single-Objective Optimization

Single-objective optimization problems seek the minimum of a single value. Single-objective
problems are typically solved by mathematical methods such as evaluating derivatives and
gradient descent as well as basic computational methods like greedy strategies. For example,
consider a single-objective optimization problem where the goal is to minimize the potential
energy of a spring U(x).

U(x) =
1

2
kx2

Evaluating dU
dx

= 0,
d

dx
U(x) = kx = 0

) x = 0

it is seen that there is a critical point when x = 0. Furthermore evaluating d2U
dx2

at the critical
point,

d2U

dx2

����
x=0

= k

k > 0

reveals that the critical point is a minimum because the second derivative is positive at the
critical point. Therefore the minimum of U(x) is at the point x = 0, or when the spring
is neither compressed or stretched. Mathematical methods are often the easiest method for
solving single objective optimization problems.

1

1.1.2 Multi-Objective Optimization

Multi-objective optimization problems seek to minimize n values simultaneously. Under
ideal circumstances each objective is independent and the problem reduces to solving n
single-objective optimization problems in parallel. This is almost never the case however as
a single property of a candidate solution usually a�ects multiple objective values. Consider
the task of maximizing the volume of a box (minimizing the volume multiplied by (�1)) and
minimizing the surface area of the box. Note x; y; z 2 (0;1).

V (x; y; z) = �xyz

A(x; y; z) = 2(xy + xz + yz)

If an attempt is made to minimize V (x; y; z) using the same mathematical method used
for the spring example in section 1.1.1:

rV = �(yz; xz; xy) = (0; 0; 0)

) (x = y = 0) OR (x = z = 0) OR (y = z = 0)

a contradiction is reached because x, y, and z cannot equal zero. A second attempt, this
time to minimize A(x; y; z) reveals:

rA = 2(y + z; x+ z; x+ y) = (0; 0; 0)

) (y + z = 0) AND (x+ z = 0) AND (x+ y = 0)

Solving by elimination:
(x; y; z) = (0; 0; 0)

Again a contradiction is reached because x, y, and z cannot equal zero. Finally, let R(x; y; z)
be de�ned as the ratio of the area to volume:

R(x; y; z) =
A(x; y; z)

V (x; y; z)
=

2(xy + xz + yz)

xyz
=

2

z
+

2

y
+

2

x

Searching for critical points reveals:

rR = �2(
1

z2
;
1

y2
;
1

x2
) = (0; 0; 0)

which has no solutions. It seems that without some new mathematical or computational
tools these problems cannot be solved.

Scalarization

Sometimes it is still useful to attempt to optimize a multi-objective problem by using a
method known as scalarization. Scalarization is simply the transformation of n objective
functions ff1; � � � ; fng into a single function F via a weighted sum[2], where ci 6= 0 is the
weight on fi.

F (p) =
nX

i=1

cifi(p)

2

Often, the weights sum to 1 so that each weight represents a percentage of the �nal sum.

nX

i=1

ci = 1

Individual objectives can be given preference by giving them larger weights. Raising the
objective function to a di�erent power k 6= 0 can be used to emphasize (k > 0) or de-
emphasize (k < 0) changes in an objective function.

F (p) =
nX

i=1

ci(fi(p))
ki

The biggest drawback of scalarization is that contributions by individual �tness measures
are anonymous, hiding useful data about the search space[2]. Additionally, it falls victim
to things like change blindness, or when multiple �tness functions change but the weighted
sum has a net change of zero. Scalarization is often abandoned for better methods of dealing
with multiple objectives simultaneously.

Pareto Optimization

One popular method of handling multiple objectives in an optimization problem is to rank
them not via the �tness values directly, but by their relative Pareto e�ciency. Simply put,
a candidate solution to a multi-objective optimization problem is Pareto e�cient (or Pareto
optimal) if it cannot make any progress in one of its objectives without causing negative
changes in some or all of the other objectives[3].

This is more easily illustrated by �rst de�ning a vector comparison operator "�". Deb
et al [4] de�ne this operator such that vector v1 is partially less than vector v2 when:

v1 � v2 � (8i j v2;i � v1;i) ^ (9i j v1;i < v2;i)

With this, comparing two solutions is done by recognizing each objective's �tness score as
a component of a �tness vector with dimension equal to the number of objectives. If the
�tness vector of one solution is partially less than that of another then the former dominates
the latter.

With this new operator Pareto optimal can be de�ned as a solution that cannot be
dominated by another solution. Note that there can be (and often are) an in�nite number
of Pareto optimal solutions to a given multi-objective optimization problem. This method
of ranking solutions is therefore not capable of discerning one true optimal solution, but the
set of non-dominated solutions. It is left up to another sorting/ranking algorithm or human
expert to choose from the set of Pareto optimal solutions the best one to solve the given
problem.

1.1.3 Computational Complexity

Computational complexity theory is the study of the intrinsic complexity of computational
problems[5]. That is to say, given a su�ciently de�ned computational problem, computa-
tional complexity theory aims to make concrete statements about the minimum, maximum,

3

and average computational e�ort needed to solve the problem, and the amount of computer
memory required to do the computation.

Computational complexity theory does not deal directly with optimization problems be-
cause their open ended nautre makes their analysis di�cult. Rather the �eld works entirely
with decision problems[6, 5]. It has been shown, however, that optimization problems can
be transformed into decision problems and therefore it is possible to study optomization
problems based on the study of their counterparts [6, 5, 1].

The time complexity of an algorithm is the number of atomic computational operations
needed for that algorithm to halt on the given input as a function of the length of the input[7].
There are some simplifying assumptions that are made when studying time complexity,
most signi�cant of which is the use of O() (pronounced "big-oh") notation. O() notation
describes any arbitrary function as being asymtotically equivelant to a simpler function[1].
This relationship comes from the fact that higher degree terms in a function's de�nition will
dominate the lower order terms as the input of the function grows very large. Therefore
the function can be approximated by its highest degree term alone, if the input values
are assumed to be very large. For example f(x) = 2x3 + 7x � 5 would be rewritten as
O(f(x)) = O(n3). This gives us a convenient way to compare how the time complexity
grows as n (the length of the input) grows. For example, an algorithm that can solve a
problem in O(n2) time is asymptotically better than an algorithm that solves the same
problem in O(n3) time.

Classifying problems based on the time complexity of the best algorithm for solving a
problem sheds light on the problem's intrinsic di�culty. Alphabetizing a bookshelf, for
example, has the time complexity O(n log(n)) which puts it in the class P (see Figure 1),
which stands for \polynomial time". Surprisingly, research has shown that there are some
problems for which �nding a solution is practically impossible. Generally speaking, these
kinds of problems have a time complexity of at best O(2n). These problems belong to the
time complexity class called EXP (or EXPTIME), which stands for \exponential time".
Problems like playing chess are in EXP. An interesting subset of EXP is the complexity class
NP which stands for \non-deterministic polynomial time". Although it is an open problem in
complexity theory if P=NP or if P 6=NP, it is generally assumed that P6=NP. A consequence
of this assumption is that problems in NP might take O(2n) time to �nd the correct solution.
What distinguishes NP from EXP is that checking an arbitrary solution for correctness only
takes polynomial time, placing the problem of verifying the solution in the class P while the
overall problem is intractable.

4

Figure 1: This diagram shows the relationship among various complexity classes (assuming P 6= NP). P,
all problems solvable in polynomial time, is contained inside NP, all problems checkable in polynomial time,
which itself is contained inside EXP, all problems which have a runtime of at least 2N .

The most intuitive example of a problem in NP is the Sudoku puzzle (Figure 2). Given
a sparsely �lled 9x9 matrix, �ll each remaining element such that every row, column, and
3x3 region contains the numbers 1 through 9 exactly once.

Figure 2: Sudoku puzzles are perhaps the most widely recognized NP-Complete problem. The di�culty of
the puzzle arises from the computational complexity inherent in such problems where trial and error is the
only real strategy available.

This might seem at �rst to be nonsense, that Sudoku is practically impossible to solve,
seeing as many people solve Sudoku puzzles in the morning paper with relative ease. How
can Sudoku be "practically impossible"? Recall that time complexity is a function of the
size of the input. A Sudoku puzzle is actually a special case of a mathematical object called
a Gerechte Design[8]. A Gerechte Design of order n is an nxn matrix, partitioned into n
regions each containing n cells, such that the symbols 1; � � � ; n appear exactly once in each
row, column, and region. Therefore a Sudoku grid is simply a Gerechte design of order
9. Furthermore the time complexity of �nding valid Gerechte designs of a given order is a
function of the order itself which is asymptotically equivalent to O(2n), so a 115x115 Sudoku

5

grid would take the worlds fastest super computer the age of the universe to solve1. In
real world NP and EXP problems, like protein folding and path planning, the size of the
input can grow well beyond 115 for even the simplest cases, and access to super computing
capabilities is limited or too expensive. For all practical purposes, solving these kinds of
problems is simply impossible.

1.2 Path Planning

Path planning is a broad class of optimization problems where the task is to �nd a viable
route from a source location to a destination within a static environment[9]. It was discussed
in Section 1.1.3 that path �nding is a\hard" problem. It belongs to the complexity class
PSPACE-Hard (see Figure 1) which makes it at least as hard as all other problems inside
PSPACE2, but potentially as hard as a problem in any of the more di�cult complexity
classes. The primary algorithmic objective is to optimize some quantity, most often path
length. In real world situations, however, additional objectives may also need to be taken into
account. Examples include minimizing the complexity of the path by reducing the number
of turns or the sum of the angles of the turns[10, 11, 12, 13, 14], maximizing the safety of the
resulting path[10, 12], and maintaining a minimum or maximum distance from obstacles or
the terrain[11, 13, 14]. Thus, path planning is often a multi-objective optimization problem.
An instance of the path planning problem considered here consists of a starting location, s;
a destination location, d; a (possibly empty) list of obstacles, obs; and a (possibly empty)
list of intermediate targets, goals in a largely unconstrained continuous environment. s and
d are represented by GPS coordinates and can exist anywhere in the environment. Obstacles
and intermediate goals can require ight in any direction and co-location of the s and d can
require a circuitous path. Obstacles are circular or polygonal. If obstacle oi is circular, it is
represented by the GPS coordinates of its center and a radius in meters. If polygonal, it is
represented by a list of vertices, each of which is a GPS location. Intermediate targets are
locations to which the vehicle must y, prior to the destination, to successfully complete its
mission. These may represent locations near RF-enabled sensors or from which a photograph
must be taken, for example. Each element of goals is an appropriately sized circle represented
in the same format as a circular obstacle.

A solution to the problem consists of a sequence of waypoints,

S = [w0; : : : ; wn]

where w0 = s and wn = d. Each waypoint wi is represented as a real-valued pair, (lat; lon),
consisting of the latitude and longitude of the location. In general, waypoints are points of
articulation in the path, though it is possible for a waypoint to subdivide a straight path
segment. A solution is considered valid if the path de�ned by S avoids all obstacles in obs
and reaches all targets in goals.

1As of March 2017 the worlds fastest super computer is the Sunway TaihuLight housed in the National
Super-computing Center in Wuxi China. With a top measured performance of 93:015 � 1015 FLOPS it can
do ' 4:02�1034 calculations in 4:32�1017 seconds (13:7�109 years), the estimated age of the universe. Given
exponential time complexity, a problem size of 115 will require 2115 ' 4:02 � 1034 calculations.

2PSPACE is the space complexity class that contains all problems that require, at most, polynomial
memory to solve. As with time complexity classes, the space complexity is related to the size of the input,
n. Figure 1 shows PSPACE in relation to the previously discussed time complexity classes.

6

1.3 UAVs and MAVs

An unmanned aerial vehicle, commonly abbreviated UAV, is exactly what the name implies;
UAVs are aircraft which are piloted remotely by a human or a computer. The term UAV
encompasses a wide variety of aircraft including stealth military airplanes and $20.00 toys
for kids. Micro aerial vehicles, abbreviated MAV, are small UAVs, the kind typically for sale
in a hobby store, or used in �lm to capture footage from high above.

Today, most UAVs are piloted by humans, with the high budget and military grade pilots
having access to computer assistance and auto-pilot. It is an open area of research to give
full autonomy to UAVs. Because MAVs are relatively inexpensive and easy to work with,
most applied research is done with them.

One area of autonomous UAV research is in path planning. Being fully autonomous
means the UAV needs to be able to receive instructions for a mission and be able to execute
that mission in whichever way is optimal, including choosing the optimal path to y during
the mission. For this reason, path planning algorithms are a key part of UAV autonomy
research.

Consider a MAV that is tasked with transporting a package from the post o�ce to a
residential address. The drone must consider the most e�cient rout to the address and
back. It must also ensure it steers clear of any no y zones like airports. It must also avoid
tall buildings, construction equipment, trees, and potentially other drones as it ies. As
mentioned in the previous section, path planning is a multi-objective optimization problem,
which makes it di�cult to solve perfectly. Additionally, if the computations are to take
place on-board the drone, energy consumption related to computation must be kept to a
minimum, since the battery powering the computer also powers the motors.

1.4 Genetic Algorithms

Approximation algorithms are typically used when �nding the solution to a problem known
to be NP-Hard or worse in time complexity. The extreme cost in computation time is
usually incurred because the algorithm is designed to make perfect decisions, which in turn
requires perfect information, which takes time for the algorithm to gather and analyze. In
these circumstances an algorithm that makes imperfect decisions during the search for a
solution might still come very close to the global optimum without performing as many
computations. The output of such an algorithm, then, is not the optimal solution but
rather an approximation of the optimal solution, and the algorithm used to �nd it is an
approximation algorithm. While some approximation algorithms are written to solve speci�c
problems, others are designed to operate on optimization problems in general.

In 1962 John H. Holland published a paper[15] that laid the groundwork for an entire
�eld of computer science known as evolutionary computation. His key idea was to design
algorithms that could adapt to the problem they are solving, similar to how organisms in
nature evolve to better survive in their environments. There are a wide variety of ways to
design such a system, but the one Holland became famous for designing is known today as
the simple genetic algorithm[2].

Genetic algorithms use randomization and the principles of evolution by natural selection
to evolve or breed good approximate solutions. The genetic algorithm leverages the fact that

7

there are many candidate solutions in a search space to converge towards the optimal solution
faster. It does this by maintaining a population of candidate solutions. By applying a mate
selection algorithm, two candidate solutions can be breed together producing a child with
similar characteristics. This is usually done many times until a new population of children
has been formed. Each new set of children is called a generation. The process is repeated,
using the children as the parents for the next generation. By ranking each candidate solution
in the population with respect to the optimization objective(s) as discussed in section 1.1
and using a mate selection algorithm that gives preference to solutions with a better ranking,
each subsequent generation will contain members that are slightly better on average than
the previous generations. Over a long sequence of iterations one could say the population
has evolved solutions that are good approximations of the optimal solution.

1.4.1 Solution Encoding Scheme

Part of what makes genetic algorithms unique among evolutionary computation models is
how the population of solutions is encoded and operated on. This is where the genetic
algorithm takes inspiration from nature. Each solution is encoded as a sequence of bits,
values, or symbols that can be decoded back into a solution for evaluation against a �tness
function. This is analogous to how each organism's DNA is a sequence of molecules that can
be decoded into a set of recipes and instructions for building the organism. Each organism
is then "evaluated" by its environment to determine its �tness. For example the sequence
[1; 0; 0; 1; 0; 1; 0] could be interpreted as 74 in base 2, a sequence of left or right turns (if 0 maps
to left and 1 maps to right then the sequence is [right; left; left; right; left; right; left]), or
any number of alternate interpretations. Likewise the sequence [1:1; 2:5; 7:3; 6:7] could be
two points on an XY-Plane (if alternating points correspond to x and y respectively) or the
setting of 4 dials on a machine that can turn from 0 to 10. Part of implementing a genetic
algorithm is to �nd an encoding scheme by which you can transform a candidate solution
into a sequence of characters and back again.

1.4.2 Genetic Operators

The genetic algorithm's main method of searching the solution space for the optimum is
through the application of genetic operators to members of the population of candidate
solutions. Extending the biological analogy, the traditional genetic operators mimic the ways
in which DNA is changed over time as members of a species mate and produce children.

Crossover

Crossover is the �rst traditional genetic operator. In nature, when two organisms mate,
each parent contributes half of the needed chromosomes to the child. They are not, however,
simply internalized as the child's own chromosomes. Instead the two chromosomes come
apart, trade segments of DNA with each other, and then recombine into two chromosomes
that are each distinct from the ones the parents contributed. This is why a child looks similar
to, but is not an exact clone of, their parents.

8

Figure 3: This cartoon demonstrates the concept of crossover.

The crossover operator in a genetic algorithm works in exactly the same way as the
biological crossover event. Consider two parent solutions, P1 and P2, represented as

P1 : [1; 0; 1; 0; 0]

P2 : [0; 1; 0; 0; 1]

The crossover operator �rst randomly chooses a cut point where each chromosome will be
separated into two pieces.

P1 : [1; 0j1; 0; 0]

P1[1] : [1; 0]

P1[2] : [1; 0; 0]

P2 : [0; 1; 0j0; 1]

P2[1] : [0; 1; 0]

P2[2] : [0; 1]

Two new solutions, C1 and C2, are then created by recombining these pieces together, typi-
cally putting together P1[1] with P2[2] and P2[1] with P1[2].

C1 : [1; 0; 0; 1]

C2 : [0; 1; 0; 1; 0; 0]

Notice that in general, the children produced this way will have di�erent lengths than the
parents unless the same cut point is used for both parents. Whether or not the length of
the sequence can change is entirely problem dependent. For some chromosome encoding
schemes, changing the length of a chromosome might corrupt the data or cause run-time
errors in the algorithm. Also note that crossover is not limited to a single cut point. The use

9

of more than one cut point (up to a maximum of `� 1 where ` is the length of the parent)
is not uncommon. The naming convention is usually single-point crossover, double-point
crossover, n-point crossover, and uniform-crossover (n = `� 1).

The form of crossover presented here is the most common kind, and the most common
modi�cations of it. There are however specialized kinds of crossover that are used for speci�c
problems like the traveling salesman problem. The variations of crossover are virtually
unlimited.

The function of the crossover operator is to serve as an exploitation mechanism. Consider
each candidate solution in the population as a point in some `-dimensional space. Each
member of the population is connected to each other point in this space to form a lattice via
a transformation by the crossover operator[2]. The crossover operator then lets the genetic
algorithm travel along the connections in the lattice in order to �nd the point in the lattice
that is closest to the optimum point of the space. In other terms, crossover is searching for
the optimal combination of the values which already exist in the population somewhere. It
cannot create new values in any sequence it operates on.

Mutation

Mutation is the other traditional genetic operator. Like in biology, whenever DNA is operated
on mistakes can occur. These mistakes are called mutations. Similarly, in genetic algorithms
mistakes are engineered to happen. Consider the parent solution P3,

P3 : [A;B; c; d;K; v]

the mutation operator will randomly select a position and change its value to create a child,
C3.

C3 : [A;B;G; d;K; v]

Mutation can be implemented in any number of ways. If the sequence is composed of 1's
and 0's then a mutation might be to just turn one into the other. If the solution is encoded
as a sequence of oating point values, mutation might add or subtract a small value from the
original. If the encoding is allowed to have a variable length, then an add or delete mutation
could lengthen or shorten the sequence, respectively. It is common to have many forms of
mutation, and select one randomly each time a mutation event occurs.

If crossover was the exploitation operator, mutation is the exploration operator. Because
mutation can alter the values within the sequences it operates on, it is e�ectively adding
new points to the lattice of solutions in the solution space[2]. This in turn lets the crossover
operator travel to new locations in the search space which were previously inaccessible.

1.4.3 Selection and Niching

Another important factor in the behavior of genetic algorithms is the method of choosing
who will be operated on by the genetic operators. How this is accomplished will have a large
e�ect on the search process. Just as dog breeders are extremely cautious to only mate their
dogs with partners of quality pedigree, so too should a genetic algorithm be picky. Applying
crossover to two parents selected randomly will produce, on average, a population of average

10

individuals. Applying crossover to two parents who are known to be good solutions will, on
average, produce solutions above average. Each generation will push ever closer to the global
optimum. There are two key aspects to this process: being able to tell which solutions are
good, and how to restrict selection to those good solutions.

Fitness Functions

As discussed in section 1.1 there are many ways to attempt to rank candidate solutions, pi,
with respect to each other. After deciding on a ranking mechanism, called a �tness function,
f(pi), in genetic algorithm literature, the population of candidate solutions can be ranked
and sorted so that individuals with higher �tness may be identi�ed.

Selection

The actual selection of parents can be done in many ways. The goal is to relate the probability
of selection to the �tness of the individual. One such method, sometimes called wagon wheel
selection, roulette wheel selection, or dart board selection, sums together the total �tness of
the population

F =
nX

i=1

f(pi)

and then assign probability of selection as a direct consequence of how much each member
contributed to that sum.

Pi = f(pi)=F

Next each individual is given a selection threshold Ti, which is the individuals probability of
selection plus the threshold of the previous (i� 1st) member.

T0 = P0

(i > 0); Ti = Pi + Ti�1

When it is necessary to choose a parent, selection is accomplished by generating a random
number Rand between 0 and 1 and choosing the �rst individual who has a threshold greater
than Rand by examining the individuals in order of increasing threshold values. This can
be visualized by dividing a circle with area 1 into wedges of area Pi. By throwing a dart
at the circle, a wedge is randomly selected and the probability of hitting a larger wedge is
higher than hitting a smaller wedge. The other names for this method come from alternate
images of this process, envisioning the circle as a roulette wheel and selection as the ball,
or envisioning the circle as a wagon wheel, and shooting an arrow between the spokes as
selection.

Another popular selection method is called tournament selection. A preliminary selection
occurs in which n members of the population are chosen with equal probability. From these
n, the one with the best �tness is selected as the winner of the tournament. If two parents
are needed, as in the case of a crossover event, a second tournament is run to select the
second parent. The number of individuals n who are chosen in the preliminary stage is
known as the tournament pressure, and is a parameter that can be tuned to achieve varying

11

degrees of strictness in the selection process. For example when n = 2 (also called a binary
tournament), the tournament pressure is said to be low, and individuals with low �tness will
more frequently be allowed to move on as parents. As the tournament pressure increases it
becomes more challenging for less �t members of the population to move on as parents. Also
note that a selection pressure of n = 1 is simply random selection.

Elitism

In most genetic algorithm implementations once a child population is created from a parent
population, it is used as the parent population for the next generation. There is a subtlety
to this procedure that often leads to the algorithm taking much more time than is necessary
to converge to a good solution. The subtlety lies in the fact that crossover and mutation are
not guaranteed to produce a result better than the solutions that are used as their input.

Actually, the most common result of mutation and crossover is complete garbage. The
genetic algorithm is relying on the selection function to defy these odds and arrive at better
solutions than random chance alone could produce. However, because mutation and crossover
are not monotonically increasing the �tness of the solutions they operate on, it is entirely
likely that the resulting child population of a given generation could be holistically worse
than the parents. In essence, the genetic algorithm is deleting good solutions on accident
when it throws away the parent population.

The solution to this problem comes as an additional complication to the algorithm called
elitism. Elitism is the practice of preserving the best member (or best n members) of the
parent population each generation. There are a wide variety of ways to implement elitism
in a genetic algorithm.

One method, used in NSGA-II [16], is to combine the parent and child populations
together into a mixed population. From this mixed population, only the top 50% of the
solutions are sent on as the parents for the next generation. This method is simple, and
e�ective. It also has the added bene�t of not requiring any additional housekeeping as other
methods might require.

Another method of elitism, often used in multi-objective genetic algorithms, is a method
called archiving. Archiving methods of elitism copy the best members of the population into
a secondary population, called the \archive", but still allow these good solutions to \die
out" as they would without any elitism. The advantage with archiving is that the elitism
does not interfere with the normal process of the genetic algorithm, arti�cially preserving
any member longer than the selection function would have allowed it.

Some archiving methods disallow archived solutions from being allowed to participate in
the creation of children at any point. Still others allow them to participate as if they were
in the parent population, or allow them to participate only every x generations.

There are di�erent methods of maintaining the archive as well. Some implementations do
not consider the members already in the archive when adding a new member, while others
will only permit a new solution to be archived if it is deemed to be good enough. This
decision is usually made by testing if it is better than any member already inside. In these
implementations, it is also common to remove members from the archive that have been
shown to be less �t than a newly archived solution.

12

Niching and Population Diversity

One potential pitfall of genetic algorithms is the potential to get stuck on a local optimum.
In genetic algorithms converging to an optimum (local or global) manifests as a decrease
in the diversity of the candidate solutions in the population as they each become like one
another (via crossover).

In order to prevent premature convergence and to help facilitate exploration of the search
space, many genetic algorithms implement a niching mechanism. In ecology, a niche is the
role and position a species has in its environment. In genetic algorithm literature, the term is
borrowed and similarly refers to how specialized the members of the population are. Similar
to how a �tness function ranks each member with respect to the optimization problem,
a niching algorithm is used to measure how unique an individual is. To avoid premature
convergence, and thus prevent getting stuck on a local optimum, this niching score is factored
into the selection process. In tournament selection where non-domination fronts are used
as the primary �tness measure, for example, a niching function can be used to break ties.
The net e�ect of a niching algorithm should be to preserve the population's most unique
members from generation to generation because their �tness is augmented by the niching
score. This allows crossover and mutation to continue to make progress at the fringes of the
solution space, and potentially �nd a new, better, optimum.

1.4.4 Tuning a Genetic Algorithm

The biggest challenge when using a genetic algorithm to solve an optimization problem is
con�guring all of the degrees of freedom to give the most e�cient problem solving algorithm.

For example there needs to be a balance between crossover and mutation to achieve a
balance between exploration and exploitation. Too much exploration, and the algorithm will
simply ignore any optimum it �nds. Too much exploitation, and the algorithm will latch
onto the �rst optimum it �nds.

There needs to be a balance in the selection process too. Balancing selection pressure
with niching is key in ensuring both speedy convergence, and enough genetic diversity to
�nd the correct optimum.

2 Problem Statement

Path planning for autonomous UAV ight is a computationally expensive task. In order
to reduce the energy and time costs of planning paths on-board a UAV (i.e. without a
connection to a centralized control center), genetic algorithms are proposed because of their
utility as multi-objective optimum approximation algorithms.

For a genetic algorithm to be considered a viable solution to the path planning problem
proposed in this thesis it must accomplish a minimum set of requirements. For a given
environment, the genetic algorithm will be required to:

� For test maps:

{ Produce a path which is free of obstacle collisions.

13

{ Produce a path with length �5% of the best known length.

� For unknown maps:

{ Produce a path which is free of obstacle collisions within three attempts.

{ Take no longer than 2 minutes for any attempt to �nd a valid path.

� Visit all (if any) intermediate goal locations, in any order.

� Output the �nal path in GPS co-ordinates for compatibility with the drone's software.

3 The Algorithm

The �rst step in determining if genetic algorithms are well suited to the path planning
problem is to implement a genetic algorithm that meets the most basic requirements de�ned
in the problem statement. After implementing a genetic algorithm, based on the well known
NSGA-II[16], a baseline was established for how well the genetic algorithm could solve the
path planning problem, by engineering inputs of increasing di�culty until a point of failure
was identi�ed.

3.1 Path�nder

Here the details of the genetic algorithm build for this work, called "Path�nder", is presented.

3.1.1 Genome & Solution Encoding

In the original genetic algorithm, the chromosome was treated as a bit string and genetic
operators are applied at the bit level. For path�nding, numerous encodings have been
considered. Hermanu et al [17], Sedighi et al [18], and Ahmed and Deb [10] have reported
on the e�ectiveness of di�erent chromosomes. Directly applying these results to the problem
is di�cult due to the discrete environments they each consider. Zheng et al [14] work with a
continuous environment. Their chromosome consists of a sequence of waypoints, each with a
state variable indicating feasibility of the incident path segments. Similarly, the chromosome
used here consists of a sequence of waypoints S , in which each waypoint is represented as
a pair of real values, interpreted as GPS degrees of latitude and longitude. State variable,
like those mentioned above, are not used in path�nder. Rather path validity is measured
during child evaluation and used as an objective function. The chromosome used here is of
variable length so as not to limit the degrees of freedom like numbers of turns and to move
away from enforced monotonicity like those used in the works cited above.

In Path�nder, operators are applied to waypoints or waypoint components, as opposed to
bits. The reason for this is to constrain the results produced by the operators. For example,
in a binary encoding scheme ipping a single high-order bit in the chromosome could result
in a huge change in the position of a waypoint. Because the algorithm is designed to be used
for navigation on an actual vehicle with very limited ight time, such large-scale changes
are impractical. No waypoint is viable if it requires movement to a position beyond what

14

is possible within the limits of the battery life of the vehicle. Following a similar argument,
crossover was not implemented in the �rst version of Path�nder.

3.1.2 Objectives

The objectives to optimize are: path length, number of obstacles hit, number of targets hit
and smoothness [12]. Smoothness, de�ned here as

n�2X

i=0

j(]wiwi+1wi+2)� �j

(radians) is related to the sum of the angles between pairs of consecutive path segments.
Minimizing this quantity reduces sharp turns which require more time and, possibly, more
maneuvering for certain types of vehicles. In order to be able to minimize all objectives, as
discussed in 1.1, the negative number of targets hit is used as an objective function.

3.1.3 Algorithm Structure

The initial population is seeded during \generation 0" which is where all of the intiialization
for the algorithm occurs. The initial parent population pP0 , consists of randomly generated
members. The chromosome for each random member contains between 1 and 5 randomly
generated waypoints. Each of these waypoints must be within some threshold distance of
the starting point, to keep the search reasonably focused. The seminal work of Deb et al,
NSGA-II [16], was used as a starting point for Path�nder. It was chosen because it is by far
the most prominent for multi-objective optimization and is reasonably easy to implement.
NSGA-II requires that a population of children exists before each new generation. Therefore
during generation 0 a child population, pC0 , is also randomly seeded which in later generations
will contain the resulting output of the genetic crossover and mutation operators. Path�nder
only applies mutation and selection operators to maintain a population of candidates. The
population is sorted into domination fronts as described in the Pareto optimization discussion
in Section 1.1. The base algorithm serves as a control in each of the presented experiments.

From generation gj, generation gj+1 is created as follows: Let generation p
P
j be the parent

population. First a child population pCj is created such that jpPj j = jpCj j. Then pPj and pCj
are merged into a combined population pP[Cj . pP[Cj is then sorted into domination fronts.
Within a front, a niching measure [19] known as crowding distance [16] is used to impose
a partial order on the members. The crowding distance of a member is a measure of the
dissimilarity of that member to other members of the front. Greater values are preferred
to help ensure diversity in the gene pool. After pP[Cj is sorted, it must be cut down to the
original size of pPj for use as the parent population in generation. Let k be the largest index
such that

kX

i=0

jfij = y � n = jpPj j

where each fi is a domination front, with increasing values of k representing further dis-
tance from the Pareto front. Then pPj+1 consists of all members from f0 through fk plus an
additional n� y members from fk+1 chosen by maximum crowding distance.

15

Child creation occurs via the mutation of a member of pPj . To select a member to mutate,
tournament selection is used with a tournament pressure of 4. When the best member of
the 4 has been chosen, it is mutated.

3.1.4 Genetic Operators

Four mutation operators are implemented: add, delete, swap, and move. When a member
is chosen for mutation, exactly one of the operators is applied. The probabilities of the
operators are 0.1, 0.05, 0.1 and 0.75, respectively. While add inserts a new waypoint into
S, the other operators each alter an existing waypoint. Distinguished waypoints w0 = s and
wn = d cannot be mutated.

The delete operator removes randomly selected waypoint wi from S for some 0 < i < n.
The swap operator randomly selects a pair of adjacent waypoints, wi and wi+1 0 < i <
i+1 < n, and exchanges their positions in S. The add operator works by randomly selecting
a pair of adjacent waypoints wi and wi+1 , 0 � i < n and creates a new waypoint, wk, at
the midpoint of the path segment between them. The move operator is then applied to wk

so that the new point is not simply the bisecting point, which would strictly decrease the
�tness of the path.

The move operator is somewhat more complex. A waypoint, wi, 0 < i < n, is chosen
at random. The latitude and longitude values of wi are changed independently according to
a Gaussian distribution with mean 0 and standard deviation �. The value for � is selected
by fair coin ip from among two candidates, small move and big move. small move is �xed
at 0.00002 degrees(GPS), approximately 2 meters. The value of big move depends on the
problem instance. For instances with small obstacles, it is 0.0002 degrees (� 20 m) and for
instances with large obstacles, it is 0.00067 degrees (� 69 m). The motivation for using
variable mutation size comes from empirical experience when running the algorithm. It is
clear that one size does not �t all input cases, and as a compromise between doing an in
depth study on the optimal mutation size and ignoring the empirical data, the choice was
made to manually set the mutation size to a more suitable value for those inputs that had
need of it. In practice, this change simply has the e�ect of scaling up the size of mutation
to match the scale of the obstacles in the input, so that they are within the same order of
magnitude of each other.

4 Experiments and Results

The algorithm, as described above, serves to provide a baseline for comparison when evalu-
ating the e�ects of additional changes to the algorithm.

Several areas of research were chosen to investigate further improvements and speedups
(in both time and convergence speed). The areas of research targeted are: problem speci�c
�tness functions, problem speci�c genetic operators, extinction events to introduce genetic
diversity, and path correction heuristics. Each of these areas will be discussed in detail in
the following sections.

Due to the iterative nature of the research, each set of changes will be presented in
chronological order rather than grouped in another way. As such, some areas of focus,

16

like crossover, will appear multiple times, and some results may be updated when they are
re-examined.

4.1 Crossover and Mass Extinction

4.1.1 Tested Components

Crossover

Let pk be a member of the population represented by its chromosome, the waypoint sequence
[w0; :::; wnk]. pk is partitioned into

pk[1] = [w0; :::; wi�1]

and
pk[2] = [wi; :::; wnk]

for some cut point (index) i 6= 0. Neither sub-sequence can be empty. With this, given
members p1 and p2, the algorithm chooses random cut-point at i in p1 and at j in p2 and
creates two children c1 and c2 such that

c1 = p1[1] + p2[2]

and
c2 = p2[1] + p1[2]

After creation, the children may, with some probability, undergo mutation. As in the
mutation-only version of the algorithm, a child population of size n is created and com-
bined with the parent population of size n to create, temporarily, a population of size 2n.
The algorithm then resorts the combined population into domination fronts, and chooses the
top n members to populate the next generation.

Mass Extinction

Though the concept of mass extinction exists in the genetic algorithms literature [20, 21],
it has not been widely adopted in general and not at all for path�nding. Therefore, the
viability, or lack thereof, for mass extinction should be investigated for this problem. The
intended goal of an extinction event is to jump start evolution when the process stalls, to
get out of evolutionary dead-ends and avoid local optima.

Three versions of mass extinction are implemented, and experiments are run comparing
each one with the base algorithm and each other. The �rst is entirely random while the
second and third use a form of elitism to prevent eliminating the best genetic members of
the population. In all three cases, the operator is invoked with probability p at an interval
of 50 generations.

17

Random Regeneration. The �rst implementation of mass extinction is the simplest.
80% of the population is eliminated entirely at random. All eliminated members are replaced
with randomly generated new members. While perhaps providing a reasonable baseline
for comparison with other extinction implementations, this version may be problematic for
vehicle ight. Completely random extinction events may eliminate all valid solutions within
the population. Such an occurrence late in a run of the system would leave the vehicle without
a valid path to y. To avoid this, on-board the MAV, only those extinction implementations
that incorporate elitism were used.

Regeneration via Crossover. In the second implementation of extinction, each ex-
tinction event eliminates 80% of the population. In a form of elitism, the best 3 members
of the population are exempted from extinction. Re-population is a two-step process. First,
60% of the deleted members are replaced by randomly generated new members. The re-
maining 40% are created via crossover. Candidates for crossover are those members that
survived extinction together with the newly created random members.

Regeneration via Mutation. Elitism plays a greater role in the third implementa-
tion. In this version, each extinction event eliminates all but the best 10 members of the
population. Once again, re-population is a two step process. First, 10 randomly generated
members are added to the population to ensure some degree of genetic diversity. Then, the
balance of the population is created by randomly selecting one of the 10 members preserved
through elitism, cloning it and mutating the clone.

4.1.2 Experimental Method

The goal with these experiments is to determine the e�ects of crossover and mass extinction
when used in a genetic algorithm for path-�nding. To do this, the algorithm, and its various
modi�cations, are run on a set of �ve sample inputs (Figure 4). Some maps, namely 1, 2, and
5, use intermediate goals that the path must intersect to change the di�culty of those inputs.
In each case it makes the problem harder to solve by disallowing a straight line path from
start to end. Each trial consisted of running the algorithm ten times for each input: with
extinction probability p equal to 0.0, 0.05, 0.10, 0.15, 0.20, each with and without crossover
enabled. Extinction occurs with probability p every 50 generations. For these tests, the
population size was �xed at 100. For each mass extinction implementation, 40 trials are run
for a total of 400 runs for each of the 5 inputs. In each trial, all runs for a given input use the
same random seed, ensuring variance from the initial population can be neglected. For each
input, a best solution is established by taking the best path after many runs of the control
algorithm. The path length values from these solutions are used to establish two of the
metrics used for experimental evaluation. In each trial, the mean number of generations is
tracked for three measures: a valid solution, denoted mng valid ; a solution with path length
within 10% of the best found solution,mng 10 ; and a solution with path length within 5%
of the best found solution, mng 5. Each run of the algorithm is limited to 3000 generations
but will terminate prior to that if a 5% threshold solution is found. Runs that reach the
maximum allowed 3000 generations are considered a failure, and the ratio of failed runs to
successful runs is captured by the success rate calculated by successful runs=total runs.

18

(a) Map 1 - Low Di�culty (b) Map 2 - Low Di�culty

(c) Map 3 - Medium Di�culty, Real World (d) Map 4 - Low Di�culty, Real World

(e) Map 5 - Low Di�culty

Figure 4: Maps 1-5 used in the Mass Extinction and Crossover experiments. S indicates the start point, D
indicates the destination, and G indicates an intermediate goal which must be visited. Yellow lines indicate
a path within 5% of optimal.

19

4.1.3 Results

Crossover

The results show that the implementation of crossover had negative e�ects in four out of �ve
input cases, with input 1 (Figure 4a) being the only instance for which the mean number
of generations decreased when crossover was used. Additionally, the success rate, or the
percent of all runs that found the optimal path, decreases signi�cantly when crossover is
enabled. In the case of input 4 (Figure 4d) the success rate drops as much as 32%. These
e�ects can be seen by comparing the columns labeled "XO-0:EXT-0" and "XO-1:EXT-0"
in Figures 5, 6, and 7. Note that Figures 5, 6, and 7 only show the data for reaching the
mgn 5 threshold described in the experimental design section. This data best classi�es the
algorithm's ability to solve the task, while the other data sets merely help establish the rate
at which it is converging.

Mass Extinction

Mass extinction as a method of improving convergence speed does not appear to be holisti-
cally bene�cial. Upon examining the mean number of generations, the �rst 5 column groups
of Figures 5, 6, and 7 show either no discernible trend, or a positive trend, indicating an
increase in computational e�ort. One notable exception is the e�ect of extinction 2 on input
3 (Figure 4c). Figure 6 shows a small negative trend, indicating improvement as the prob-
ability of events increases. Another notable e�ect is that of extinction 3 on input 1 (Figure
4a). When the probability was set to 10% or 15% there was a slight improvement over the
control (Figure 7). Given the high degree of variance among the number of generations, as
indicated by the black error bars showing �1 standard deviation, it is unlikely these e�ects
are statistically signi�cant. It is clear however that when examining the success rates there is
in every case a positive trend when applying increasingly more extinction events. This com-
bined with the results regarding mean generations, seems to suggest that the root cause of
the algorithm's failure is lack of genetic diversity. As the probability of extinction increases,
so to does the potential for new genetic material. It is reasonable to conclude that this
increase would assist in �nding solutions (as evidenced by the increase in success rates) but
would make the search take longer on average (as evidenced in the rise in mean generations)
because the algorithm must periodically waste time considering many extremely sub-optimal
solutions.

Interactions

Seeing as each feature, crossover and mass extinction, is mostly negative independently, it
is no surprise that when used in concert their negative e�ects are ampli�ed. With crossover
enabled, the mean number of generations dramatically rises as extinction probability grows.
This trend can be seen in the last 5 column groups in Figures 5, 6, and 7. However with
the exception of extinction 3 on input 3 (Figure 7 and 4c respectively) increasing values of
extinction probability dramatically improve the success rate. The same conclusions discussed
above hold here as well, extinction increases diversity, improving the capability of the search,
but making it altogether slower.

20

Figure 5: A graph showing the mean number of generations for successful runs of each input (bars) and
the success rate of each set of parameters (lines) for extinction method 1. � one standard deviation is shown
as black error bars. Inputs tested were 1-5.

Figure 6: A graph showing the mean number of generations for successful runs of each input (bars) and
the success rate of each set of parameters (lines) for extinction method 2. � one standard deviation is shown
as black error bars. Inputs tested were 1-5.

21

Figure 7: A graph showing the mean number of generations for successful runs of each input (bars) and
the success rate of each set of parameters (lines) for extinction method 3. � one standard deviation is shown
as black error bars. Inputs tested were 1-5.

4.2 Crossover, Obstacle Intrusion, Path Correction, and Mutation

Size

4.2.1 Tested Components

Intersection Crossover

Though typical for genetic path planning algorithms, the single-point crossover described
in Section 1.4 is largely ine�ective [22]. This is, perhaps, not surprising given that the
genome represents spatial information but there is no spatial basis for choosing cut locations
or applying crossover. To address this, a new form of crossover speci�c to path planning
is introduced, called intersection crossover. This operator allows crossover only between
genomes representing paths that intersect within the environment.

In intersection crossover, parent selection occurs via tournament selection as for XO-R.
Once parents have been chosen, crossover occurs only if the paths they encode intersect.
Otherwise, rather than attempt multiple times to choose intersecting paths, each parent is
copied and the copies mutated.

Two versions of intersection crossover are implemented: (1) XO-I and (2) XO-I+. To
de�ne them formally, let p1 and p2 be members of the population with genomes hs; w01 ; : : : ;
wi; wi+1; : : : ; w`1 ; ei and hs; w02 ; : : : ; wj; wj+1; : : : ; w`2 ; ei, respectively. Further, let p1 and
p2 intersect at point y on path segments hwi; wi+1i and hwj; wj+1i.

Figure 8 illustrates XO-I and XO-I+. In XO-I, child c1 = hs; w01 ; : : : ; wi; wj+1; : : : ; w`2 ;
ei and child c2 = hs; w02 ; : : : ; wj; wi+1; : : : ; w`1 ; ei. Informally, c1 includes the waypoints of
p1 from s up to wi, the waypoint immediately before intersection point y, and the waypoints
of p2 from wj+1, the waypoint immediately after y, to e.

22

(a) Two intersecting paths

chosen as parents for XO-I or

XO-I+.
(b) The two paths from Fig-

ure 8a after XO-I.

(c) The two paths from Fig-

ure 8a after XO-I+.

Figure 8: Depiction of intersection crossover. The �rst image shows two intersecting paths. The middle
and right show the result using XO-I and XO-I+, respectively.

XO-I+ augments each child with intersection point y. This yields children c1 = hs; w01 ;
: : : ; wi; y; wj+1; : : : ; w`2 ; ei and c2 = hs; w02 ; : : : ; wj; y; wi+1; : : : ; w`1 ; ei.

Obstacle Intrusion

The standard objective related to obstacle avoidance is a simple count of the number of
obstacles hit. Minimizing this quantity to 0 yields a collision-free path; however, this measure
of collisions has a shortcoming: a path that crashes through the middle of an obstacle is
indistinguishable (with respect to that objective) from one that only slightly clips a corner
of an obstacle. This limits the evolutionary utility of the obstacle avoidance objective.

An alternative real-valued measure of collision, called obstacle intrusion, is presented
based on the degree to which a path intersects an obstacle. The resulting �ner �tness
granularity improves the algorithm's ability to distinguish and reward degrees of obstacle
intrusion, thus facilitating evolutionary search.

The obstacle intrusion value is calculated as follows. The points at which the path enters
and exits an obstacle oj 2 O are determined. As there can be multiple enter/exit pairs for oj,
the i-th pair is denoted as pairi = (oj:in[i]; oj:out[i]). Connected by the path segments between
them, each pair divides the obstacle into two regions with areas Ai

1 and Ai
2. The obstacle

intrusion value for pairi on obstacle oj is I
i
j = min(Ai

1; A
i
2). The total obstacle intrusion

value for oj is Ij =
P

i I
i
j and the total intrusion value for a population member as

P
j2jOj Ij,

the sum over all obstacles. See Figure 9.
It would likely improve evolution to have a separate objective for each obstacle in the

environment. However, this introduces implementation problems as the number of objectives
would be both variable and large. While the objective as presented here is a compromise in

23

Figure 9: The obstacle intrusion measure and path correction operator use the same information in dif-
ferent ways. Consider path p = hs; w1; w2; w3; ei through this simple map. The value of the obstacle
intrusion objective for this input/path pair is A1

1 + A2
1. Applying path correction to p results in path

p0 = hs;A;B;C;D;w1; E; F;G;w2; w3; ei.

this sense, it proves extremely bene�cial in testing.

Path Correction

The path correction operator eliminates obstacle collisions by \pulling" a path o� of any
obstacles it hits. Consider again the points at which a path enters and exits an obstacle.
The algorithm determines the shortest path, along the obstacle perimeter, between these
two points. It then replaces in the genome the path segments between entry and exit with
a new subpath following the shortest path along the perimeter, translated 1m outside the
perimeter. Figure 9 shows the e�ect of path correction.

If used, path correction can be applied once, to the initial population, or repeatedy at
some �xed interval. When path correction is applied to the initial population, it is denoted
by IPC. When it is applied at a �xed interval of x generations, it is denoted by RPC-x. RPC-
0 denotes the case in which path correction is not applied repeatedly. The hypothesis is that
applying path correction too frequently might inhibit evolution by limiting exploitation.

4.2.2 Experimental Method

The experiments described here are designed to evaluate the e�ectiveness of the new oper-
ators and optimization objective introduced. Each experiment consists of 80 trials where
each trial includes runs with each of the combinations of parameters being tested. Trials
are run for all four maps (Figures 10a-10d). Within a trial, the initial population is the

24

Feature Values Tested Explanation Other Parameters

obs intrusion o�, on RPC-0, XO-I+

path correction RPC-0 no path correction obs intrusion
IPC path correct initial population
RPC-100 path correct every 100 generations
IPC ^ RPC-100 path correct initial pop & every 100 gens

correction interval RPC-f1, 5, 20, 50, 100g path correction every X generations obs intrusion, XO-I+, [IPC: o�, on]
crossover XO-O� no crossover obs intrusion, [RPC-0, RPC-20]

XO-R random cutpoint crossover
XO-I intersection crossover
XO-I+ intersection crossover, point added

avg move 8, 12, 16, 24, 32, 40, 48, 64 average distance of move mutation obs intrusion, RPC-20,
[XO-O�, XO-R, XO-I, XO-I+]

Table 1: Overview of the experiments reported. The �rst and second columns list the feature that is the
primary subject of the experiment and the values being tested. The 4th column provides values for other
relevant parameters. As indicated, some experiments used all new features in concert.

same for each run to eliminate a source of variability. Experiments are run on the Stampede
supercomputer at the Texas Advanced Computing Center. Each standard compute node
on Stampede includes two Intel Xeon E5-2680 8 core Sandy Bridge processors and 32GB of
RAM.

The values of several parameters used in this work were established empirically in prior
works [23, 22]. These include the probabilities with which the four mutation operators
are applied (0.25, 0.15, 0.1, 0.5, respectively), and the post-crossover mutation probability
(0.0). In addition, the utility of the waypoint count objective is found to be somewhat
bene�cial. Other parameter values are established empirically as part of this work, including
the crossover probability (0.4) and whether path correction is applied to generation 0 (no).

As discussed in the problem statement, successful path planning requires satisfying the
validity conditions as well as minimizing, to the extent possible, the optimization objectives.
Given the desire to improve the e�ciency of path planning, the number of generations re-
quired to �nd a valid path of acceptable length is also examined. As unsuccessful runs are
expensive, the success rates of the trials are measured. In this context, success is de�ned as
�nding a path within 5% of optimal in fewer than a speci�ed maximum number of genera-
tions. For these experiments the maximum generations is 3000. Within the set of successful
runs, the mean number of generations and the standard deviations are tracked.

Table 1 summarizes the sequence of experiments. The experiments are conducted in
sequence so that once the utility of a feature is established, it can be used, or excluded, to
enhance overall performance in subsequent experiments. Thus, experiments listed lower in
Table 1 include most or all of the features described.

25

(a) Map 6 - Medium Di�culty, Real World (b) Map 7 - Hard Di�culty

(c) Map 8 - Hard Di�culty (d) Map 9 - Hard Di�culty

Figure 10: Maps 6-9 used in the Intersection Crossover, Path Correction, Obstacle Intrusion, and Mutation
Size experiments. S indicates the start point, E indicates the end point, and the yellow line indicates a path
within 5% of optimal.

4.2.3 Results

For each map tested, an optimal path length is established. A run is considered successful if
it �nds a valid path with a length within 5% of optimal. The success rate is the percentage
of runs that are successful. For each experiment, the success rate (S-R), the mean number

26

XO-O� XO-R XO-I XO-I+

RPC-0 RPC-20 RPC-0 RPC-20 RPC-0 RPC-20 RPC-0 RPC-20

Map 1
S-R 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
S-M 503.60 38.09 337.85 35.25 259.28 31.96 163.66 32.18
S-SD 255.55 7.98 193.14 5.81 128.67 6.85 75.29 7.09

Map 2
S-R 0.00% 99.87% 0.00% 100.00% 0.00% 100.00% 59.00% 100.00%
S-M N/A 79.75 N/A 71.42 N/A 43.48 1501.58 46.90
S-SD N/A 65.00 N/A 17.20 N/A 9.39 611.63 15.31

Map 3
S-R 4.26% 85.16% 1.06% 82.55% 52.13% 87.89% 69.15% 80.99%
S-M 2250.25 184.03 2898.00 259.66 2126.94 136.69 734.38 160.24
S-SD 491.19 282.42 0.00 474.73 528.17 282.65 280.95 345.63

Map 4
S-R 71.88% 90.89% 80.21% 82.55% 82.29% 86.98% 69.79% 85.81%
S-M 73.20 65.32 287.22 259.66 86.63 44.79 130.31 58.83
S-SD 34.08 77.15 581.00 474.73 228.90 45.55 374.46 94.83

Across Four Maps

S-R 44.03% 93.98% 45.32% 92.32% 58.61% 93.72% 74.49% 91.70%
S-M 942.35 91.79 1174.36 104.97 824.28 64.23 632.48 74.54
S-SD 260.27 108.13 258.05 143.30 295.24 86.11 335.58 115.72

Table 2: Crossover comparisons across four maps.
Comparison of no path-correction (RPC-0) versus path correction every 20th generation, without validating
the initial population (RPC-20), across mutation distances centered at 8, 12, 16, 24, 32, 40, 48, and 64
meters. S-R, S-M, and S-SD represent success rate and the mean and standard deviation, in number of
generations, for successful runs.

of generations required for success (S-M), and the standard deviation in the number of
generations (S-SD) are reported.

Intersection Crossover

Table 2 compares the e�ects of having no crossover versus standard random cut-point
crossover (XO-R) versus two new crossovers that employ path intersections as the basis
for de�ning cut points (XO-I and XO-I+).

When looking at averages across all maps, XO-R leads to a comparable success rate as
having no crossover, while increasing both the number of generations to �nd a solution as
well as the standard deviation. These �ndings, along with the additional cost of performing
crossover, suggest that no crossover is preferred to XO-R.

When comparing no crossover to XO-I and XO-I+, the new crossovers have a de�nite
advantage. Both new operators have comparable success rates, coupled with a decreased
number of generations and standard deviation. On a map by map basis, the advantages are
not obvious on maps 1 and 2, but become more apparent on maps 3 and 4, although no
clear winner emerges. The superiority of the new crossovers stems from their leveraging of
the existing intersection points, which indicate the crossing paths are spatially compatible
and could exchange segments before and after the intersection point. If paths do not al-
ready intersect, swapping random segments is likely to be strongly disruptive to the formed

27

Success Rate (S-R) Success Mean (S-M) Success SD (S-SD)
O� On O� On O� On

Map 1 37.50% 100.00% 903.86 162.23 870.03 76.62
Map 2 0.00% 67.42% N/A 1473.57 N/A 678.06
Map 3 0.00% 82.11% N/A 831.99 N/A 388.29
Map 4 1.09% 77.17% 12.00 71.21 N/A 41.75

Average 9.65% 81.67% 457.93 634.75 870.03 296.19

Table 3: E�ect of obstacle intrusion on all maps.
Comparison of runs on maps 1 through 4 with obstacle intrusion o� and on. Runs were performed without
path correction and with XO-I+. S-M and S-SD are presented as number of generations.

solutions, complicating exploitation of evolved sub-paths.

Obstacle Intrusion

To determine the impact of obstacle intrusion, trials that isolate it from the path correction
operator are run. For the maps tested, strong evidence is presented which shows that all
aspects of the algorithm's performance bene�t from employing this new objective. Specif-
ically, success rate increases dramatically, mean generations decrease, standard deviations
of generations for successful runs decrease, and the percentage of successful runs drastically
increases.

In particular, only the least complex map, map 1, has signi�cant success (37:5%) without
obstacle intrusion. Maps 2, 3, and 4 have success rates of 0%; 0%; and 1:09%, respectively.
The 1:09% value for map 4 represents a single successful run. With obstacle intrusion
enabled, the success rates jump to 100%; 67:42%; 82:10%; and 77:17%, respectively.

When examining the mean number of generations, there is a seemingly negative e�ect
of obstacle intrusion on map 4. This is due to an outlying event where a single success is
achieved extremely fast while obstacle intrusion is o�. Thus, the mean generation measure is
arti�cially low for the obstacle intrusion case. This behavior, however, is not representative
of having obstacle intrusion turned o� for said map, as evidenced by the 1% success rate, as
opposed to the 77% success rate obtained when obstacle intrusion is on. Table 3 summarizes
the results.

The cost of obstacle intrusion is further analyzed in terms of actual run-times. The goal is
to ensure that a decrease in the number of mean generations is not o�set by a commensurate
increase in the time to evolve each generation. With obstacle intrusion on, each generation
can take up to 3 times as long as generations with obstacle intrusion o�. However, since
the success rates increase dramatically and the overall number of generations decreases, the
additional time per generation is warranted. Only map 1 has su�ciently high success rates
in both cases to allow meaningful comparison. Average time for successful runs with obstacle
intrusion o� is 170.85 versus 50.32 seconds when the objective is on.

Path Correction

Figure 11 summarizes the results of the path correction tests. The graph shows that, on the
less deceptive maps (namely, maps 1 and 2), most path-correction interval setups succeed

28

Figure 11: Results for experiments on the frequency with which path correction is applied. IPC indicates
that members of the initial population were path corrected. Obstacle intrusion was on in all cases. The lines
and scale on the right indicate success rates for each of the four maps.

in all cases (light blue and black lines) with the exceptions of \never" (RPC-0) and \only
on the initial generation"(IPC & RPC-0). Nevertheless, the number of generations required
to �nd a successful path does vary with parameters. On these maps, path-correcting more
often tends to lead to improved results; however, the di�erences are modest.

On the more deceptive maps (i.e. maps 3 and 4), path-correction setups have a stronger
distinguishing e�ect (note the di�erences among the yellow and green bars across the path-
correction intervals). Speci�cally, not validating the initial population appears to allow for
increased initial exploration, an e�ect that is strengthened when the path-correcting interval
is larger, thus increasing the initial exploration period (note the generally lower bars on the
left-most set of RPC-1 { RPC-100 intervals, versus the taller bars on the right-most set of
IPC & RPC-1 { RPC-100 in �gure 11). Based on these �ndings, it appears that waiting to
path-correct the population is likely to lead to better exploration of the solution space. In
the experiments, best overall performances, as measured by a combination of high success
rate and low average number of generations, are obtained by the setups of path-correcting
every 20 or every 50 generations, coupled with NOT path-correcting the initial population.

Additionally, when comparing path-correction intervals against runs with no path-correction
(RPC-0), the di�erence can be stark but is map speci�c. For example, while only a small
di�erence is observed on map 1 (compare �rst dark blue bar to the others), map 2 strongly
bene�ts from path-correcting at any interval (compare the �rst red bar on the graph to the
others). On maps 3 and 4, however, the bene�t of path-correction isn't as clear. In fact,
many setups lead to severely decreased success rates. Nevertheless, among the bene�cial
setups an increase in the number of successful runs is observed, as well as a decrease in the
number of generations and standard deviations.

While future testing will include a variety of larger maps, real world scenarios are gen-
erally likely to be less deceptive than the scenarios tested in this work (closer to map 1, for
instance). Nevertheless, since the speci�cs of the deceptiveness may vary, future algorithm
improvements would likely revolve around increasing its adaptability to the unpredictable

29

nature of the map. Since it is generally advisable to conduct multiple evolution runs, one
sensible option is to employ various path-correction intervals across these runs to mediate
the impossibility of knowing the speci�cs of the sought after path before it is found by the
GA.

Mutation Size

To further verify the observed crossover di�erences, a number of di�erent mutation sizes are
tested (mutation distances centered at 8, 12, 16, 24, 32, 40, 48, and 64 meters). When looking
at setups with each of the di�erent mutation sizes for each of the four crossover types (no
crossover, XO-R, XO-I, and XO-I+), no clear winning distance is seen for all maps. While
it is to be expected that the ideal average path mutation distance is map speci�c, a general
trend was observed: evolution behavior generally improves as mutation distance increases,
approaching some map-speci�c value, and decreases again as this value is surpassed.

As before, on maps 1 and 2 no signi�cant di�erences are observed upon increasing muta-
tion distances. On map 4, higher mutation distances appear to be bene�cial. It is believed
that this is a result of a straight segment being part of the sought after, but more di�cult
to �nd, ideal path. On Map 3, increasing average mutation size beyond 40 m is no longer
bene�cial, which can be explained by the map's lack of a straight path as found in map 4.

Based on the �ndings, an average mutation of 24-32 meters appears to work well for
the tested scenarios. For the obstacle spacing and shapes present, these distances resulted
in an e�ective compromise between exploring the space and exploiting solution features.
Given that bene�cial mutation distances are map speci�c, it would be sensible to incorpo-
rate dynamically adjusting mutation distances. Note that since no winning mutation size
emerged, crossover comparison values presented in Table 2 are averaged across all of the
tested mutation distances (8 through 64 meters).

5 Final Conclusions

5.1 Crossover and Mass Extinction

In this set of experiments, the e�ects of crossover and mass extinction on a genetic algorithm
are tested for path�nding in a continuous environment. Due to the large number of possible
algorithms and parameters as well as variations in environments, a de�nitive statement
regarding the utility of these operators can not be made. Broader experimentation is required
to explore these variables. However, the results show that crossover may not be desirable
for some instances of path�nding while mass extinction shows some promise. The inputs
that were used for testing are varied. Numbers 1 and 2 are linear and symmetric yet the
results for these inputs are very di�erent. Crossover helps with 1 but not 2 and extinction is
slightly negative for 1 and neutral for 2. Inputs 3 and 4 are drawn from the real world and
are signi�cantly more complex. In both cases, crossover is a negative inuence. Input 5 is
simple but not symmetric. In this case, crossover is negative while extinction is neutral.

When extinction exhibits a bene�t, it is often best for mng 5, the threshold that requires
the largest number of generations to reach. This makes intuitive sense: because extinction
occurs infrequently, longer times provide greater opportunity for extinction to bene�t the

30

population. In fact, for mng 5, bene�t due to extinction increases slightly with extinction
probability. The reverse is true for mng valid.

In the experiments, crossover and extinction coexist reasonably well. For some inputs,
extinction improves results when used with crossover while in others extinction is neutral. In
no case is the combination signi�cantly negative for measure mng 5, though for most inputs
crossover is negative. However, this e�ect is independent of extinction.

There is a great deal of future work to continue this research. As mentioned above,
greater variation in extinction implementations and parameters, such as probability and
the frequency with which extinction is invoked, could expose trends. For example, rather
than invoking extinction at regular intervals, it could be used based on a decreasing rate of
change in the population. Alternatively, the increasing utility of extinction with number of
generations might suggest increasing the extinction probability with time.

Another area for future work is the extent to which random regeneration aids extinction.
Extinction implementations 2 and 3 vary signi�cantly in the amount of random regeneration.
It is hypothesized that the new genetic material introduced by random members could bene�t
evolution. Experiments in which both versions are used with varying numbers of random
new members might identify a trend and the ideal random percentage.

5.2 Crossover, Obstacle Intrusion, and Path Correction

In this set of experiments two new domain-speci�c genetic operators and a new domain-
speci�c optimization objective were presented that each dramatically improve the success
rate of the algorithm and the number of generations required to achieve success. Further,
the maps for which the algorithm can successfully �nd paths are signi�cantly more complex
and di�cult to solve than in previous iterations of path�nder.

In future work, experiments should be conducted to determine if using XO-I and XO-I+
in concert proves bene�cial. This is motivated by the data showing that for some maps XO-I
is signi�cantly better than XO-I+ while for others the situation is reversed. Perhaps it is
possible to �nd a way to leverage the bene�ts of both within a single run.

Some parameters, such as the move mutation distance and the path correction frequency,
demonstrate utility for all maps but with di�erent values. For example, the algorithm
performs better with path correction every 50 generations for map 3 but every 20 generations
for other maps. It might be possible to leverage features in the environment or changes in
evolutionary progress to change these parameter values dynamically.

In another direction, it might be useful to explore improvements to obstacle intrusion.
For example, perhaps it is possible to maintain this objective value separately for each
obstacle without creating an unmanageably large number of objectives. Further, the current
implementation of obstacle intrusion is complex. It may be possible to simplify it and, in
the process, make it more e�cient.

31

References

[1] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to algorithms.
The MIT Press, 2014.

[2] K. A. De Jong, Evolutionary Computation A Uni�ed Approach. Bradford Books, 2016.

[3] V. Pareto, \The new theories of economics," Journal of Political Economy, vol. 5, no. 4,
p. 485{502, 1897.

[4] N. Srinivas and K. Deb, \Multiobjective optimization using nondominated sorting in
genetic algorithms," Evolutionary Computation, vol. 2, no. 3, pp. 221{248, 1994.

[5] O. Goldreich, Computational complexity: a conceptual perspective. Cambridge Univer-
sity Press, 2008.

[6] M. R. Garey and D. S. Johnson, Computers and intractability: a guide to the theory of
NP-completeness. W.H. Freeman and Company, 1979.

[7] O. Goldreich, P, NP, and NP-Completeness. Cambridge University Press, 2010.

[8] R. A. Bailey, P. J. Cameron, and R. Connelly, \Sudoku, gerechte designs, resolu-
tions, a�ne space, spreads, reguli, and hamming codes," The American Mathematical
Monthly, vol. 115, p. 383{404, May 2008.

[9] Y. K. Hwang and N. Ahuja, \Gross motion planning { a survey," ACM Computing
Surveys, vol. 24, no. 3, pp. 219{291, 1992.

[10] F. Ahmed and K. Deb, \Multi-objective optimal path planning using elitist non-
dominated sorting genetic algorithms," Tech. Rep. 20111013, Kanpur Genetic Algo-
rithms Laboratory (KanGAL), Indian Institute of Technology, 2011.

[11] I. Hasircioglu, H. Topcuoglu, and M. Ermis, \3-d path planning for the navigation of
unmanned aerial vehicles by using evolutionary algorithms," in Genetic Algorithms and
Evolutionary Computation Conference, pp. 1499{1506, ACM, 2008.

[12] H. Jun and Z. Qingbao, \Multi-objective mobile robot path planning based on improved
genetic algorithm," in IEEE International Conference on Intelligent Computation Tech-
nology and Automation, pp. 752{756, 2010.

[13] J. Xiao, Z. Michalewicz, L. Zhang, and K. Trojanowski, \Adaptive evolutionary plan-
ner/navigator for mobile robots," IEEE Trans Evol Comp, vol. 1, no. 1, 1997.

[14] C. Zheng, M. Ding, C. Zhou, , and L. Li, \Coevolving and cooperating path planner
for multiple unmanned air vehicles," Engineering Applications of Arti�cial Intelligence,
vol. 17, pp. 887{896, 2004.

[15] J. H. Holland, \Outline for a logical theory of adaptive systems," Journal of the ACM,
vol. 9, p. 297{314, Jan 1962.

[16] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, \A fast and elitist multiobjective
genetic algorithm: Nsga-ii," IEEE Trans Evol. Comp., vol. 6, no. 2, pp. 182{197, 2002.

[17] A. Hermanu, T. Manikas, K. Ashenayi, and R. Wainwright, \Autonomous robot nav-
igation using a genetic algorithm with an e�cient genotype structure," in Intelligent
Engineering Systems Through Arti�cial Neural Networks: Smart Engineering Systems
Design: Neural Networks, Fuzzy Logic, Evolutionary Programming, Complex Systems
and Arti�cial Life, ASME Press, 2004.

[18] K. Sedighi, K. Ashenayi, T. Manikas, R. Wainwright, and H.-M. Tai, \Autonomous
local path planning for a mobile robot using a genetic algorithm," in Proceedings of
Congress on Evolutionary Computation, pp. 1338{1345, IEEE, 2004.

[19] O. Mengshoel and D. Goldberg, \The crowding approach to niching in genetic algo-
rithms," Evolutionary Computation, vol. 16, no. 3, pp. 315{354, 2008.

[20] B. Jaworski, L. Kuczkowski, R. Smierzchalski, and P. Kolendo, \Extinction event con-
cepts for the evolutionary algorithms," Przeglad Elektrotechniczny (Electrical Review),
vol. 88, no. 10b, 2012.

[21] J. Lehman and R. Miikkulainen, \Extinction events can accelerate evolution," PLoS
ONE, vol. 10, August 2015.

[22] D. Mathias and V. Ragusa, \An empirical study of crossover and mass extinction in
a genetic algorithm for path�nding in a continuous environment," in Proceedings of
Congress on Evolutionary Computation, IEEE, 2016.

[23] D. Mathias and V. Ragusa, \Micro aerial vehicle path�nding and ight using a multi-
objective genetic algorithm," in Proc. Intelligent Systems Conf., 2016.

