Mosaic-like Silver Nanobowl Plasmonic Crystals as Highly Active Surface-Enhanced Raman Scattering Substrates

Date

2015

Journal Title

Journal ISSN

Volume Title

Publisher

The Journal of Physical Chemistry

Abstract

We present a simple approach to creating a type of surface-enhanced Raman scattering (SERS) substrate composed of a mosaic-like structured Ag metal surface on nanobowl plasmonic crystals (NBPCs) formed by combining soft nanoimprinting and substrate (in situ) heating during metal deposition. This new type of sensor exploits the electromagnetic enhancement of localized surface plasmon resonances (LSPR) produced by a template nanostructured metal surface and surface plasmons (SP) in-between the gaps of the mosaic surface to create a highly SERS-active substrate. Our approach is simple, in that it implements low processing temperatures (200 °C) and does not require any postdeposition annealing or exposure to high temperature environments, enabling the use of mechanically flexible substrates. These SERS substrates exhibit higher SERS intensities in comparison to those obtained with the corresponding square array of smooth (room temperature metal deposition) nanobowl structures with similar spatial layouts. As an example toward an application, we demonstrate polychlorinated biphenyl (PCB-77) SERS detection using Ag mosaic NBPC substrates. Three-dimensional finite-difference time-domain (3D FDTD) simulations qualitatively capture the key features of these systems and suggest a route to the fabrication of optimized, highly efficient SERS substrates in silico.

Description

Keywords

Research Subject Categories::NATURAL SCIENCES::Chemistry::Physical chemistry

Citation

Baca, A. J., Baca, J., Montgomery, J. M., Cambrea, L. R., Funcheon, P., Johnson, L., Moran, M., & Connor, D. (2015). Mosaic-like Silver Nanobowl Plasmonic Crystals as Highly Active Surface-Enhanced Raman Scattering Substrates. The Journal of Physical Chemistry - Part C, 119(31), 17790–17799. https://doi.org/10.1021/acs.jpcc.5b03824

DOI