Boundary distributions with respect to Chebyshev's inequality

dc.contributor.authorBias, Peter V.
dc.contributor.authorHedman, Shawn
dc.contributor.authorRose, David
dc.date.accessioned2022-06-23T20:09:25Z
dc.date.available2022-06-23T20:09:25Z
dc.date.issued2010
dc.description.abstractVariables whose distributions achieve the boundary value of Chebyshev's inequality are characterized and it is found that non-constant variables with this property are symmetric discrete with at most three values. Nevertheless, the bound of Chebyshev's inequality remains optimal for the class of continuous variables.en_US
dc.identifier.citationBias, P. V., Hedman, S., & Rose, D. (2010). Boundary distributions with respect to Chebyshev's inequality. Journal of Mathematics and Statistics, 6(1), 47-51. https://doi.org/10.3844/jmssp.2010.47.51en_US
dc.identifier.otherhttps://doi.org/10.3844/jmssp.2010.47.51
dc.identifier.urihttp://hdl.handle.net/11416/641
dc.language.isoen_USen_US
dc.publisherScience Publicationsen_US
dc.subjectStatisticsen_US
dc.subjectVariables (Mathematics)en_US
dc.subjectChebyshev’s inequalityen_US
dc.titleBoundary distributions with respect to Chebyshev's inequalityen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Bias_2010_Boundary_Distributions_with_Respect_to_Chebyshev’s_Inequality.pdf
Size:
70.32 KB
Format:
Adobe Portable Document Format
Description: